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The restrictions on the coefficients describing physical effects depend on the

orientation of the symmetry elements of the crystal or quasicrystal with respect

to the Cartesian coordinate system employed. They are given for the

piezoelectric effect of second order in stress or strain for all the orientations

that can be expressed by the sequence of elements in the Hermann–Mauguin

symbol of the point group. In the literature, the restrictions are usually given

only for a particular orientation, which sometimes is not specified.

1. Introduction

Piezoelectric effects of higher order have aroused much

interest in view of technical applications. Piezoelectric effects

of second order in stress or strain have been determined

experimentally, e.g. in �-quartz (Kittinger et al., 1986), in

lithium niobate (Cho & Yamanouchi, 1987), in potassium

niobate (Cho et al., 2000) or using density-functional theory in

III–V semiconductors (Bester et al., 2006). All these materials

have different point-group symmetries, 32, 3m, mm2 and �443m,

respectively. The restrictions on the coefficients describing the

piezoelectric effect depend on the orientation of the symmetry

elements of the crystal or quasicrystal with respect to the

Cartesian coordinate system, which is normally used in crystal

physics. Koptsik (1966) was first to determine the form of the

piezoelectric effects of second order in stress for the 21 non-

centrosymmetric crystallographic point groups in a particular

orientation. Later, Nelson (1979) determined the form of the

piezoelectric effects of second order in strain for the same

point groups, not always in the same orientation. Unfortu-

nately, the results of both authors contain a number of errors.

In the present paper, these errors are corrected and the results

extended to all the standard orientations that can be expressed

by a particular sequence of symmetry elements in the

Hermann–Mauguin symbol of the point group. Recently, the

results have been extended to a number of quasicrystal point

groups by Rama Mohana Rao et al. (2007). They claim that the

coefficients in their Table 2 give the electric polarization as a

function of the stresses, whereas they give it as a function of

the strains. Their results are extended to all quasicrystal point

groups in all standard orientations. In the present paper, all

results will be given for the stresses as well as for the strains

and presented in the lucid notation of Nye (1985).

2. The form of the matrix describing the piezoelectric
effect of second order in stress or strain

The electric polarization Pi as a function of mechanical stress

�jk can be written as

Pi ¼ dijk�jk þDijklm�jk�lm: ð1Þ

Koptsik (1966) considered the contribution of second order

Dijklm. The tensor �jk being symmetric in j and k has six

independent components that are usually referred to as

�1 ¼ �11; �2 ¼ �22; �3 ¼ �33; �4 ¼ �23; �5 ¼ �31; �6 ¼ �12:

ð2Þ

Equation (1) can then be written as

Pi ¼ di��� þDi������; ð3Þ

where Greek indices run from 1 to 6. In order to preserve the

usual rules of summing over repeated indices, we must define

di1 ¼ di11; di2 ¼ di22; di3 ¼ di33;

di4 ¼ 2di23; di5 ¼ 2di31; di6 ¼ 2di12 ð4Þ

and, analogously,

Di�� ¼ Dijklm if �; � ¼ 1; 2; 3;

Di�� ¼ 2Dijklm if only one of �; � ¼ 1; 2; 3; ð5Þ

Di�� ¼ 4Dijklm if �; � ¼ 4; 5; 6:

[Koptsik (1966) uses wrong powers of 2 if � 6¼ �.]
The electric polarization Pi as a function of mechanical

strain "jk can be written as

Pi ¼ eijk"jk þ Eijklm"jk"lm: ð6Þ



The tensor "jk being symmetric in j and k has six independent

components that are usually referred to as

"1 ¼ "11; "2 ¼ "22; "3 ¼ "33; "4 ¼ 2"23; "5 ¼ 2"31; "6 ¼ 2"12:

ð7Þ

Equation (6) can then be written as

Pi ¼ ei�"� þ Ei��"�"�: ð8Þ

It follows that

ei� ¼ eijk if � ¼ 1; 2; . . . ; 6 ð9Þ

and

Ei�� ¼ Eijklm if �; � ¼ 1; 2; . . . ; 6: ð10Þ

The Hermann–Mauguin symbols (HMS) can be interpreted as

giving symmetry elements of point groups in a specified

orientation with respect to the axes x, y and z of the Cartesian

coordinate system used for describing the physical property

under consideration. For the orthorhombic groups, x is

parallel to the first entry in the HMS, y parallel to the second

and z parallel to the third. If, in the monoclinic case, one wants

to indicate the choice of the monoclinic axis, symbols with

three entries can be used as in the orthorhombic case, e.g. 121

indicates a rotation axis 2 || y, 11m a mirror plane m? z. In the

cases (crystallographic or not) with a principal axis n or �nn, n �

3, the principal symmetry direction given by the first entry is

parallel to z, whereas one of the secondary symmetry direc-

tions given by the second entry is parallel to x (and another

parallel to y for n with n even or �nn with n/2 even). If n is odd,

symbols with three entries can be used to indicate whether a

secondary axis is along x or y, e.g. 3m1 indicates a mirror plane

m ? x, 312 a rotation axis 2 || y. Finally, in the cubic and

icosahedral cases, symmetry elements given by the first entry

appear along x, y and z.

These conventions are stressed here because often the

orientation with respect to the Cartesian coordinate system is

not indicated in the literature, leading to confusion. Examples:

the form that Nelson (1979) gives in Table 9 of the Appendix

for Ei�� under the heading �66m2 is valid for 2 || x, i.e. for �662m;

the form that Rama Mohana Rao et al. (2007) give under the

headings 5m and 10m2 are valid for m ? y, i.e. for 51m and

102m.

The tensors Dijklm and Eijklm are symmetric under an

interchange of jk and lm. It follows that Di�� and Ei�� are

symmetric under an interchange of � and �; they can be

characterized by matrices with three rows corresponding to i =

1, 2, 3, and 21 columns corresponding to �, � = 1, 2, . . . , 6 with

� � �. The 21 columns will be arranged such that coefficients

that are equal or multiples of each other [which in Nye

notation (Nye, 1985) are connected by a line] do not lie too far

apart. The same order of the 21 columns will be used for all

point groups.

As explained e.g. in Bhagavantam (1966), it follows from

Neumann’s principle that Dijklm and Eijklm, being polar tensors

of odd rank, vanish for the centrosymmetric point groups. In

addition, these tensors vanish also for the icosahedral point

group 235 and the dodecagonal point groups 12, 122m and

12m2. The non-vanishing forms of the 3 � 21 matrices for the

point groups of crystals and quasicrystals are given in Nye

notation (the notation being explained in Fig. 1) in Figs. 2–9.

The forms of Dijklm and Eijklm have been determined using

the direct inspection method of Fumi (1952a,b) in the cases

where the point-group symmetry contains only rotations, and

using results by Grimmer (1991, 2007) in the other non-

centrosymmetric cases. Consider a change of the Cartesian

coordinate system such that the vector v has components vi in

the old system and v0i = aijvj in the new one. The components of

Dijklm in the new system are then

D0ijklm ¼ aipajqakralsamtDpqrst

ð11Þ

and similarly for Eijklm. If the

change of the coordinate system

corresponds to a point-group

symmetry operation of the

material under consideration, the

tensor will have the same

components in the primed and

the unprimed system according

to the Neumann principle.

Consider as an example the

monoclinic point group 211: it is

generated by the 180� rotation

about x, for which

aijð2xÞ ¼

1 0 0

0 �1 0

0 0 �1

0
@

1
A:

It follows that D0ijklm = Dijklm if an

even number of the five indices i,
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Figure 1
Explanation of the symbols used in Figs. 2–9.



j, k, l, m are 2 or 3, i.e. if an odd number equal 1, and that D0ijklm

= �Dijklm if an even number of these five indices equal 1. In

the second case, Dijklm must vanish, whereas in the first it may

have any value. Considering how an index � is related to a pair

i, j, one finds that Di�� (and Ei��) must have the form F(211)

given in Fig. 2.

In what follows, use will be made of the following opera-

tions: F(C) = F(A)� F(B) means that each matrix F satisfying

the restrictions C can uniquely be written as the sum of a

matrix satisfying the restrictions A and a matrix satisfying the

restrictions B. The same will be expressed also as F(A) =

F(C) � F(B) or as F(B) = F(C) � F(A). F(D) = F(A) \ F(B)

means that each matrix F satisfying the restrictions D satisfies

the restrictions A and the restrictions B.

Because 211 and m11 have only the identity 1 in common,

and together they generate 2=m11, i.e. a centrosymmetric

group, any matrix F(1) can be written uniquely as a sum of a

matrix satisfying the restrictions for 211 and a matrix satisfying

the restrictions for m11: F(1) = F(211) � F(m11). The

restrictions for F(m11) can therefore be obtained as F(m11) =

Acta Cryst. (2007). A63, 441–446 Hans Grimmer � Piezoelectric effect 443

research papers

Figure 3
Forms of Di�� and Ei�� for the non-centrosymmetric orthorhombic point
groups. Numbers between brackets indicate the number of independent
components.

Figure 4
Forms of Di�� and Ei�� for the non-centrosymmetric tetragonal point
groups. Numbers between brackets indicate the number of independent
components.

Figure 5
Forms of Di�� and Ei�� for the non-centrosymmetric trigonal point
groups. Numbers between brackets indicate the number of independent
components.

Figure 2
Forms of Di�� and Ei�� for the non-centrosymmetric triclinic and
monoclinic point groups. Numbers between brackets indicate the number
of independent components.



F(1) � F(211), see Fig. 2. Similar considerations lead to the

forms F(121) and F(112), from which F(1m1) = F(1) � F(121)

and F(11m) = F(1) � F(112) are obtained.

The orthorhombic symmetry 222 is generated by 211 and

121. The form F(222) therefore satisfies the restrictions for 211

and 121: F(222) = F(211) \ F(121), similarly F(2mm) =

F(211) \ F(1m1), F(m2m) = F(m11) \ F(121), F(mm2) =

F(m11) \ F(1m1), see Fig. 3.

The tetragonal form F(4) is a special case of F(112) because

112 (= 2z) is a subgroup of 4 (= 4z). For a 90� rotation about z,

the transformation matrix has the form

aijð4zÞ ¼

0 �1 0

1 0 0

0 0 1

0
@

1
A:

The requirement of invariance leads to the form F(4) given at

the top of Fig. 4. The remaining forms in Fig. 4 follow easily as

follows: F(422) = F(4) \ F(222). Because 422 and 4mm have 4

in common, and together generate the centrosymmetric group

4=mmm, any matrix satisfying the restrictions for 4 can be

written uniquely as a sum of a matrix satisfying the restrictions

for 422 and a matrix satisfying the restrictions for 4mm: F[4] =

F[422] � F[4mm]. The restrictions for F[4mm] can therefore

be obtained as F[4mm] = F[4]� F[422]. Similarly, 4 and �44 have

2 in common, together they generate the centrosymmetric

group 4=m. It follows that F[�44] = F[2] � F[4]. Analogously,

F[�442m] = F[222] � F[422], F[�44m2] = F[mm2] � F[4mm].

For a 120� rotation about z, the transformation matrix has

the form

aijð3zÞ ¼

�1=2 �
ffiffiffi
3
p
=2 0ffiffiffi

3
p
=2 �1=2 0

0 0 1

0
@

1
A;

which leads to more complicated results, which have been

published by Koptsik (1966) for D and by Nelson (1979) for E.

I checked their results using (11). Whereas Nelson (1979) is

correct, there remains an error in Koptsik (1966) (even after

correcting for the wrong power of 2 if � 6¼ �), who states that

D322 vanishes whereas D322 = D311. Once F(3) has been

determined, all the other trigonal and hexagonal forms follow

easily: F(321) = F(3) \ F(211), F(312) = F(3) \ F(121),

F(3m1) = F(3) � F(321), F(31m) = F(3) � F(312). F(6) =

F(3) \ F(112), F(�66) = F(3) � F(6), F(622) = F(6) \ F(211),

F(6mm) = F(6)� F(622), F(�662m) = F(321)� F(622), F(�66m2) =

F(3m1) � F(6mm).

The cubic group 23 may be generated by 222 and a 120�

rotation about the sum of the three basis vectors of the

Cartesian coordinate system. F(23) is therefore a special case

of F(222), which is given in Fig. 7. F(432) = F(23) \ F(4),

F(�443m) = F(23) � F(432).
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Figure 8
Forms of Di�� and Ei�� for the non-centrosymmetric pentagonal point
groups. Numbers between brackets indicate the number of independent
components.

Figure 7
Forms of Di�� and Ei�� for the non-centrosymmetric cubic point groups.
Numbers between brackets indicate the number of independent
components.

Figure 6
Forms of Di�� and Ei�� for the non-centrosymmetric hexagonal and some
octagonal, decagonal and dodecagonal point groups. Numbers between
brackets indicate the number of independent components.



For a 72� rotation about z, the transformation matrix has

the form

aijð5zÞ ¼

ð
ffiffiffi
5
p
� 1Þ=4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5þ

ffiffiffi
5
p
Þ=8

q
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð5þ
ffiffiffi
5
p
Þ=8

q
ð
ffiffiffi
5
p
� 1Þ=4 0

0 0 1

0
BB@

1
CCA;

which again leads to a rather complicated result, which has

been published by Rama Mohana Rao et al. (2007) for D. I

checked their result using (11) and found that it holds for E,

not for D. Once F(5) has been determined, all the other

pentagonal forms follow easily: F(521) = F(5) \ F(211),

F(512) = F(5) \ F(121), F(5m1) = F(5) � F(521), F(51m) =

F(5) � F(512), see Fig. 8. Also the octagonal, decagonal and

dodecagonal forms are easily obtained thanks to a theorem of

Hermann (1934), which states that invariance under an n-fold

rotation has the same effect as invariance under an 1-fold

rotation for tensors of rank < n. It follows that F(8) = F(10) =

F(12) = F(6), F(822) = F(1022) = F(1222) = F(622), F(8mm) =

F(10mm) = F(12mm) = F(6mm), see Fig. 6. Notice that the

subgroup of rotations in �nn with n even is only n=2. F(�88) =

F(4) � F(8), F(�882m) = F(422) � F(822), F(�88m2) = F(4mm) �

F(8mm); F(10) = F(5) � F(10), F(102m) = F(521) � F(1022),

F(10m2) = F(5m1) � F(10mm); F(12) = F(6) � F(12) = 0,

F(122m) = F(622) � F(1222) = 0, F(12m2) = F(6mm) �

F(12mm) = 0. The non-vanishing forms with an axis �nn, n = 8, 10

or 12, are given in Fig. 9.

3. Discussion

The notation used in this paper has the advantage of showing

immediately which matrix elements are equal or multiples of

each other. The results have been given not only for Ei�� but

also for Di��, i.e. not only for the piezoelectric effect as a

function of strain but also as a function of stress. Figs. 1–4 and

7 show for triclinic, monoclinic, orthorhombic, tetragonal and

cubic point groups that the same restrictions follow from the

Neumann principle on the forms of Di�� and Ei��.

The forms of Di�� and Ei�� have been given for all orien-

tations in which the point groups appear in the standard

orientation of the corresponding holohedry; in the monoclinic

case, all three settings have been considered. The latter was

needed for an easy derivation of forms for higher symmetries.

In addition, it is often convenient to consider point groups not

only in the standard orientation with respect to the Cartesian

coordinate system, especially in connection with phase tran-

sition, e.g. when the high-temperature phase with symmetry

4=mmm splits into two domains with the oriented symmetries
�442m and �44m2. Notice that the forms F(�442m) and F(�44m2), given

in Fig. 4, look very different. Often authors do not make clear

which orientation they consider, which may lead to confusion:

the form given by Nelson (1979) for �66m2 really corresponds to
�662m (= �66z2xm); the form that Rama Mohana Rao et al. (2007)

give for 5m really corresponds to 51m (= 5z1my), their form for

10m2 really corresponds to 102m (= 10z2xm).

We noted a few other mistakes in the often used Table 9 of

Nelson (1979): E345 need not vanish for �44; it may have any

value W, as for �442m. D ffi �(A + 2B) for 3m, not D ffi

�(A – 2B). The first hexagonal form holds for 6 not for �66.

Rama Mohana Rao et al. (2007) do not consider the

symmetries of octagonal and dodecagonal quasicrystals and

only two of the decagonal symmetries; we added the missing

cases. Notice that Di�� and Ei�� vanish also for the only non-

centrosymmetric icosahedral point group 235, as follows from

equation (2.2) of Rama Mohana Rao et al. (2007). The forms

derived applying the Neumann principle to the quasicrystal

symmetries hold for the phonon part of the tensor, as

discussed in Grimmer (2007).

It has been shown that, once the results are known for 2x, 2y,

2z, 3z, 3xxx, 4z and 5z, it is easy to write them down for all the

cases that we considered. Notice that the forms 3z and 5z are

rather closely related: the same combinations d, e and i that

appear in F(5) appear also in F(3) in the same positions.
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